13,240 research outputs found

    On Quantum Special Kaehler Geometry

    Full text link
    We compute the effective black hole potential V of the most general N=2, d=4 (local) special Kaehler geometry with quantum perturbative corrections, consistent with axion-shift Peccei-Quinn symmetry and with cubic leading order behavior. We determine the charge configurations supporting axion-free attractors, and explain the differences among various configurations in relations to the presence of ``flat'' directions of V at its critical points. Furthermore, we elucidate the role of the sectional curvature at the non-supersymmetric critical points of V, and compute the Riemann tensor (and related quantities), as well as the so-called E-tensor. The latter expresses the non-symmetricity of the considered quantum perturbative special Kaehler geometry.Comment: 1+43 pages; v2: typo corrected in the curvature of Jordan symmetric sequence at page 2

    Deformations of special geometry: in search of the topological string

    Full text link
    The topological string captures certain superstring amplitudes which are also encoded in the underlying string effective action. However, unlike the topological string free energy, the effective action that comprises higher-order derivative couplings is not defined in terms of duality covariant variables. This puzzle is resolved in the context of real special geometry by introducing the so-called Hesse potential, which is defined in terms of duality covariant variables and is related by a Legendre transformation to the function that encodes the effective action. It is demonstrated that the Hesse potential contains a unique subsector that possesses all the characteristic properties of a topological string free energy. Genus g3g\leq3 contributions are constructed explicitly for a general class of effective actions associated with a special-K\"ahler target space and are shown to satisfy the holomorphic anomaly equation of perturbative type-II topological string theory. This identification of a topological string free energy from an effective action is primarily based on conceptual arguments and does not involve any of its more specific properties. It is fully consistent with known results. A general theorem is presented that captures some characteristic features of the equivalence, which demonstrates at the same time that non-holomorphic deformations of special geometry can be dealt with consistently.Comment: 44 pages, LaTex; v2, v3: minor text improvement

    Cooperative Spectrum Sensing Using Random Matrix Theory

    Full text link
    In this paper, using tools from asymptotic random matrix theory, a new cooperative scheme for frequency band sensing is introduced for both AWGN and fading channels. Unlike previous works in the field, the new scheme does not require the knowledge of the noise statistics or its variance and is related to the behavior of the largest and smallest eigenvalue of random matrices. Remarkably, simulations show that the asymptotic claims hold even for a small number of observations (which makes it convenient for time-varying topologies), outperforming classical energy detection techniques.Comment: Submitted to International Symposium on Wireless Pervasive Computing 200

    Matched-filtering and parameter estimation of ringdown waveforms

    Get PDF
    Using recent results from numerical relativity simulations of non-spinning binary black hole mergers we revisit the problem of detecting ringdown waveforms and of estimating the source parameters, considering both LISA and Earth-based interferometers. We find that Advanced LIGO and EGO could detect intermediate-mass black holes of mass up to about 1000 solar masses out to a luminosity distance of a few Gpc. For typical multipolar energy distributions, we show that the single-mode ringdown templates presently used for ringdown searches in the LIGO data stream can produce a significant event loss (> 10% for all detectors in a large interval of black hole masses) and very large parameter estimation errors on the black hole's mass and spin. We estimate that more than 10^6 templates would be needed for a single-stage multi-mode search. Therefore, we recommend a "two stage" search to save on computational costs: single-mode templates can be used for detection, but multi-mode templates or Prony methods should be used to estimate parameters once a detection has been made. We update estimates of the critical signal-to-noise ratio required to test the hypothesis that two or more modes are present in the signal and to resolve their frequencies, showing that second-generation Earth-based detectors and LISA have the potential to perform no-hair tests.Comment: 19 pages, 9 figures, matches version in press in PR

    BPS black holes, the Hesse potential, and the topological string

    Full text link
    The Hesse potential is constructed for a class of four-dimensional N=2 supersymmetric effective actions with S- and T-duality by performing the relevant Legendre transform by iteration. It is a function of fields that transform under duality according to an arithmetic subgroup of the classical dualities reflecting the monodromies of the underlying string compactification. These transformations are not subject to corrections, unlike the transformations of the fields that appear in the effective action which are affected by the presence of higher-derivative couplings. The class of actions that are considered includes those of the FHSV and the STU model. We also consider heterotic N=4 supersymmetric compactifications. The Hesse potential, which is equal to the free energy function for BPS black holes, is manifestly duality invariant. Generically it can be expanded in terms of powers of the modulus that represents the inverse topological string coupling constant, gsg_s, and its complex conjugate. The terms depending holomorphically on gsg_s are expected to correspond to the topological string partition function and this expectation is explicitly verified in two cases. Terms proportional to mixed powers of gsg_s and gˉs\bar g_s are in principle present.Comment: 28 pages, LaTeX, added comment

    In-Situ absolute phase detection of a microwave field via incoherent fluorescence

    Full text link
    Measuring the amplitude and the absolute phase of a monochromatic microwave field at a specific point of space and time has many potential applications, including precise qubit rotations and wavelength quantum teleportation. Here we show how such a measurement can indeed be made using resonant atomic probes, via detection of incoherent fluorescence induced by a laser beam. This measurement is possible due to self-interference effects between the positive and negative frequency components of the field. In effect, the small cluster of atoms here act as a highly localized pick-up coil, and the fluorescence channel acts as a transmission line.Comment: 13 pages, 5 figure

    Automatic speaker segmentation using multiple features and distance measures: a comparison of three approaches

    Get PDF
    This paper addresses the problem of unsupervised speaker change detection. Three systems based on the Bayesian Information Criterion (BIC) are tested. The first system investigates the AudioSpectrumCentroid and the AudioWaveformEnvelope features, implements a dynamic thresholding followed by a fusion scheme, and finally applies BIC. The second method is a real-time one that uses a metric-based approach employing the line spectral pairs and the BIC to validate a potential speaker change point. The third method consists of three modules. In the first module, a measure based on second-order statistics is used; in the second module, the Euclidean distance and T2 Hotelling statistic are applied; and in the third module, the BIC is utilized. The experiments are carried out on a dataset created by concatenating speakers from the TIMIT database, that is referred to as the TIMIT data set. A comparison between the performance of the three systems is made based on t-statistics
    corecore